straph.generators package¶
Submodules¶
straph.generators.barabasi_albert module¶
-
straph.generators.barabasi_albert.
barabasi_albert
(t_window, nb_node, occurrence_law_node='poisson', occurrence_param_node=None, presence_law_node='poisson', presence_param_node=None, occurrence_law_link='poisson', occurrence_param_link=None, presence_law_link='poisson', presence_param_link=None, initial_nb_node=1, m_link=1)[source]¶ Stream Graph generator following a Barabasi-Albert like behavior. The stream graph begins with initial_nb_node all connected, then nb_node-initial_nb_node are added they are connected with m_link existing node with probability p = degree_of_node/sum_of_degrees. Each node occurs following occurrence_law_node(occurrence_param_node), each segmented node has a presence which length follows presence_law_node(presence_param_node), each link occurs following occurrence_law_link( occurrence_param_link) and each segmented link has a presence which length follows presence_law_link(presence_param_link).
- Parameters
-
t_window – Time windows of the Stream Graph
nb_node – Desired Number of nodes in the stream graphs
occurrence_law_node – Random variable for node occurrence (numpy function or ‘poisson’
occurrence_param_node – Parameter of the node occurrence law
presence_law_node – Random variable for node presence (numpy function or ‘poisson’ or ‘uniform’)
presence_param_node – Parameter of the node presence law
occurrence_law_link – Random variable for link occurrence (numpy function or ‘poisson’)
occurrence_param_link – Parameter of the link occurrence law
presence_law_link – Random variable for link presence (numpy function or ‘poisson’ or ‘uniform’)
presence_param_link – Parameter of the link presence law
initial_nb_node – Parameter of the Barabasi-Albert model : Number of connected nodes initial present (m0)
m_link – Parameter of the Barabasi-Albert model : the number of edge when we (preferentially) attach it.
- Returns
-
straph.generators.barabasi_albert.
generate_link_presence
(m_link, initial_nb_nodes, nb_node, node_presence, occurrence_law_link, occurrence_param_link, presence_law_link, presence_param_link)[source]¶ Generate links presence and occurrence. .. rubric:: References
A. L. Barabási and R. Albert “Emergence of scaling in random networks”, Science 286, pp 509-512, 1999.
- Parameters
-
m_link – Parameter of the Barabasi-Albert model : the number of edge when we (preferentially) attach it.
initial_nb_nodes – Parameter of the Barabasi-Albert model : Number of connected nodes initial present (m0)
nb_node – Number of Nodes
node_presence – Node presence
occurrence_law_link – Random variable for link occurrence (numpy function or ‘poisson’)
occurrence_param_link – Parameter of the link occurrence law
presence_law_link – Random variable for link presence (numpy function or ‘poisson’ or ‘uniform’)
presence_param_link – Parameter of the link presence law
- Returns
-
straph.generators.barabasi_albert.
generate_node_presence
(t_window, nb_node, occurrence_law_node, occurrence_param_node, presence_law_node, presence_param_node)[source]¶ Generate nodes presence and occurrence.
- Parameters
-
t_window – Time windows of the Stream Graph
nb_node – Number of Nodes
occurrence_law_node – Random variable for node occurrence (numpy function or ‘poisson’
occurrence_param_node – Parameter of the node occurrence law
presence_law_node – Random variable for node presence (numpy function or ‘poisson’ or ‘uniform’)
presence_param_node – Parameter of the node presence law
- Returns
-
straph.generators.barabasi_albert.
get_intersection
(u, v, node_presence)[source]¶ Get the intersection between the presence of u and v.
- Parameters
-
u – First Node
v – Second Node
node_presence – Node presence
- Returns
Interection
-
straph.generators.barabasi_albert.
random_link_presence
(intersec, rep, dur)[source]¶ Generate the occurrence and the presence of a link given occurrence_law(occurrence_param) and presence_law(presence_param).
- Parameters
-
intersec – Intersection between the prense of extremities (realisable interval for link))
rep – Number of segmented links
dur – Length of each interval corresponding to a segmented link
- Returns
link presence
-
straph.generators.barabasi_albert.
random_node_presence
(t_windows, rep, plac, dur)[source]¶ Generate the occurrence and the presence of a node given occurrence_law(occurrence_param) and presence_law(presence_param).
- Parameters
-
t_windows – Time window of the Stream Graph
rep – Number of segmented nodes
plac – Emplacement of each segmented node (sorted array)
dur – Length of each interval corresponding to a segmented node
- Returns
node presence
straph.generators.erdos_renyi module¶
-
straph.generators.erdos_renyi.
erdos_renyi
(t_window, nb_node, occurrence_law_node='poisson', occurrence_param_node=None, presence_law_node='poisson', presence_param_node=None, occurrence_law_link='poisson', occurrence_param_link=None, presence_law_link='poisson', presence_param_link=None, p_link=None, directed=False, weights_law=False, weights_law_param=False, trips_law=False, trips_law_param=False)[source]¶ Stream Graph generator following an Erdos-Renyi like behavior. Each link is sampled with probability p_link, each node occurs following occurrence_law_node(occurrence_param_node), each segmented node has a presence which length follows presence_law_node(presence_param_node), each link occurs following occurrence_law_link( occurrence_param_link) and each segmented link has a presence which length follows presence_law_link(presence_param_link).
- Parameters
-
trips_law_param –
trips_law –
weights_law_param –
weights_law –
t_window – Time windows of the Stream Graph
nb_node – Desired Number of nodes in the stream graphs
occurrence_law_node – Random variable for node occurrence (numpy function or ‘poisson’
occurrence_param_node – Parameter of the node occurrence law
presence_law_node – Random variable for node presence (numpy function or ‘poisson’ or ‘uniform’)
presence_param_node – Parameter of the node presence law
occurrence_law_link – Random variable for link occurrence (numpy function or ‘poisson’)
occurrence_param_link – Parameter of the link occurrence law
presence_law_link – Random variable for link presence (numpy function or ‘poisson’ or ‘uniform’)
presence_param_link – Parameter of the link presence law
p_link – Probability of the existence of a link between two random nodes (0<=p_link<1), Erdos Renyi parameter.
directed – True for a random directed Stream Graph, False for an undirected Stream Graphs
- Returns
-
straph.generators.erdos_renyi.
generate_link_presence
(nb_node, node_presence, occurrence_law_link, occurrence_param_link, p_link, presence_law_link, presence_param_link, directed=False)[source]¶ Generate links presence and occurrence. .. rubric:: References
P. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959). E. N. Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
- Parameters
-
nb_node – Number of Nodes
node_presence – Node presence
occurrence_law_link – Random variable for link occurrence (numpy function or ‘poisson’)
occurrence_param_link – Parameter of the link occurrence law
p_link – Probability of the existence of a link between two random nodes (0<=p_link<1), Erdos Renyi parameter
presence_law_link – Random variable for link presence (numpy function or ‘poisson’ or ‘uniform’)
presence_param_link – Parameter of the link presence law
directed – True for a random directed Stream Graph, False for an undirected Stream Graphs
- Returns
-
straph.generators.erdos_renyi.
generate_node_presence
(t_window, nb_node, occurrence_law_node, occurrence_param_node, presence_law_node, presence_param_node)[source]¶ Generate nodes presence and occurrence.
- Parameters
-
t_window – Time windows of the Stream Graph
nb_node – Number of Nodes
occurrence_law_node – Random variable for node occurrence (numpy function or ‘poisson’
occurrence_param_node – Parameter of the node occurrence law
presence_law_node – Random variable for node presence (numpy function or ‘poisson’ or ‘uniform’)
presence_param_node – Parameter of the node presence law
- Returns
-
straph.generators.erdos_renyi.
generate_trips
(links, link_presence, node_presence, trips_law, trips_law_param)[source]¶
-
straph.generators.erdos_renyi.
generate_weights
(link_presence, weights_law, weights_law_param)[source]¶
-
straph.generators.erdos_renyi.
get_intersection
(u, v, node_presence)[source]¶ Get the intersection between the presence of u and v.
- Parameters
-
u – First Node
v – Second Node
node_presence – Node presence
- Returns
Interection
-
straph.generators.erdos_renyi.
get_node_presence_from_link
(node_presence, n, b, e)[source]¶ Return the maximal temporal node corresponding to (b,e,n)
- Parameters
-
node_presence –
n – node
b – beginning of the interval (time)
e – ending of the interval (time)
- Returns
Maximal temporal node presence corresponding to (b,e,n) : (t0,t1)
-
straph.generators.erdos_renyi.
random_link
(p_link)[source]¶ Generate a random link with probability p_link.
- Parameters
p_link – probability (0<= p_link <1).
- Returns
True if the link exists False otherwise
-
straph.generators.erdos_renyi.
random_link_presence
(intersec, rep, dur)[source]¶ Generate the occurrence and the presence of a link given occurrence_law(occurrence_param) and presence_law(presence_param).
- Parameters
-
intersec – Intersection between the prense of extremities (realisable interval for link))
rep – Number of segmented links
dur – Length of each interval corresponding to a segmented link
- Returns
link presence
-
straph.generators.erdos_renyi.
random_node_presence
(t_windows, rep, plac, dur)[source]¶ Generate the occurrence and the presence of a node given occurrence_law(occurrence_param) and presence_law(presence_param).
- Parameters
-
t_windows – Time window of the Stream Graph
rep – Number of segmented nodes
plac – Emplacement of each segmented node (sorted array)
dur – Length of each interval corresponding to a segmented node
- Returns
node presence